Skip to main content
Log in

Generation of hybrid cell lines with endothelial potential from spontaneous fusion of adult bone marrow cells with embryonic fibroblast feeder

  • Articles
  • Cell and Tissue Models
  • Published:
In Vitro Cellular & Developmental Biology - Animal Aims and scope Submit manuscript

Summary

We have previously isolated mouse embryonic cell lines with endothelial potential using a simple empirical approach. In an attempt to isolate similar cell lines from adult mouse bone marrow (BM), BM cells were cultured on mitotically inactive mouse embryonic fibroblast (MEF) feeder cells. Several cell lines with putative endothelial potential were generated. They expressed endothelial-specific genes and formed vascular-like structures when plated on matrigel. When transplanted into appropriate mouse models, they incorporated into the endothelium of the vasculature. Similar cell lines were also obtained using human or porcine BM. None of these lines induced tumor formation when transplanted into immunodeficient Rag1−/− mice. However, all the lines were aneuploid with genetic markers from BM samples and the MEF feeder, suggesting that they resulted from a non-species-specific fusion of a BM cell and mitotically inactive MEF. Together, these lines demonstrated for the first time that BM cells can also undergo fusion with commonly used mitotically inactive feeder cells. Although these fusion cell lines were culture artifacts, their derivation would be useful in understanding fusion of BM cells with other cell types, and their endothelial potential will also be useful in characterizing endothelial differentiation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bailey, A. S.; Jiang, S.; Afentoulis, M.; Baumann, C. I.; Schroeder, D. A.; Olson, S. B.; Wong, M. H.; Fleming, W. H. Transplanted adult hematopoietic stem cells differentiate into functional endothelial cells. Blood 103:13–19; 2004.

    Article  PubMed  CAS  Google Scholar 

  • Barski, G.; Sorieul, S.; Cornefert, F. “Hybrid” type cells in combined cultures of two different mammalian cell strains. J. Natl. Cancer Inst. 26:1269–1291; 1961.

    PubMed  CAS  Google Scholar 

  • Batzer, M. A.; Deininger, P. L. A human-specific subfamily of Alu sequences. Genomics 9:481–487; 1991.

    Article  PubMed  CAS  Google Scholar 

  • Beck, H.; Voswinckel, R.; Wagner, S., et al. Participation of bone marrow-derived cells in long-term repair processes after experimental stroke. J. Cereb. Blood Flow Metab. 23:709–717; 2003.

    Article  PubMed  Google Scholar 

  • Calvo, J. H.; Osta, R.; Zaragoza, P. Quantitative PCR detection of pork in raw and heated ground beef and pate. J. Agric. Food Chem. 50:5265–5267; 2002.

    Article  PubMed  CAS  Google Scholar 

  • Carmeliet, P.; Ferreira, V.; Breier, G., et al. Abnormal blood vessel development and lethality in embryos lacking a single VEGF allele. Nature 76:947–956; 1996.

    Google Scholar 

  • Chande, M. Stem cells get to the heart of the matter. Lancet 357:1099; 2001.

    Article  PubMed  CAS  Google Scholar 

  • Cho, J. J.; Malhi, H.; Wang, R.; Joseph, B.; Ludlow, J. W.; Susick, R.; Gupta, S. Enzymatically labeled chromosomal probes for in situ identification of human cells in xenogeneic transplant models. Nat. Med. 8:1033–1036; 2002.

    Article  PubMed  CAS  Google Scholar 

  • Elefanty, A. G.; Robb, L.; Birner, R.; Begley, C. G. Hematopoietic-specific genes are not induced during in vitro differentiation of scl-null embryonic stem cells. Blood 90:1435–1447; 1997.

    PubMed  CAS  Google Scholar 

  • El Oakley, R. M.; Ooi, O. C.; Bongso, A.; Yacoub, M. H. Myocyte transplantation for myocardial repair: a few good cells can mend a broken heart. Ann. Thorac. Surg. 71:1724–1733; 2001.

    Article  PubMed  Google Scholar 

  • El Oakley, R. M.; Seow, K. K.; Tang, T. P.; Kok, C. W.; Teh, M.; Lim, Y. T.; Lim, S. K. Whole bone marrow transplantation induces angiogenesis following acute ischemia. Redox Rep. 7:215–218; 2002.

    Article  PubMed  Google Scholar 

  • Ferrara, N.; Carver-Moore, K.; Chen, H., et al. Heterozygous embryonic lethality induced by targeted inactivation of the VEGF gene. Nature 380:439–442; 1996.

    Article  PubMed  CAS  Google Scholar 

  • Friedrich, G.; Soriano, P. Promoter traps in embryonic stem cells: a genetic screen to identify and mutate developmental genes in mice. Genes Dev. 5:1513–1523; 1991.

    PubMed  CAS  Google Scholar 

  • Herrmann, B. G.; Kispert, A. The T genes in embryogenesis. Trends Genet. 10:280–286; 1994.

    Article  PubMed  CAS  Google Scholar 

  • Jackson, K. A.; Majka, S. M.; Wang, H., et al. Regeneration of ischemic cardiac muscle and vascular endothelium by adult stem cells. J. Clin. Invest. 107:1395–1402; 2001.

    Article  PubMed  CAS  Google Scholar 

  • Jiang, Y.; Vaessen, B.; Lenvik, T.; Blackstad, M.; Reyes, M.; Verfaillie, C. Multipotent progenitor cells can be isolated from postnatal murine bone marrow, muscle, and brain. Exp. Hematol. 30:896; 2002

    Article  PubMed  CAS  Google Scholar 

  • Kallianpur, A. R.; Jordan, J. E.; Brandt, S. J. The SCL/TAL-1 gene is expressed in progenitors of both the hematopoietic and vascular systems during embryogenesis. Blood 83:1200–1208; 1994.

    PubMed  CAS  Google Scholar 

  • Kocher, A. A.; Schuster, M. D.; Szaboles, M. J., et al. Neovascularization of ischemic myocardium by human bone-marrow-derived angioblasts prevents cardiomyocyte apoptosis, reduces remodeling and improves cardiac function. Nat. Med. 7:430–436; 2001.

    Article  PubMed  CAS  Google Scholar 

  • Lim, S. K.; Kim, H.; Ali, A.; Lim, Y. K.; Wang, Y.; Chong, S. M.; Costantini, F.; Baumman, H. Increased susceptibility in Hp knockout mice during acute hemolysis. Blood 92:1870–1877; 1998.

    PubMed  CAS  Google Scholar 

  • Masuda, H.; Asahara, T. Post-natal endothelial progenitor cells for neovascularization in tissue regeneration. Cardiovasc. Res. 58:390–398; 2003.

    Article  PubMed  CAS  Google Scholar 

  • Mertelsmann, R. Plasticity of bone marrow-derived stem cells. J. Hematother. Stem Cell Res. 9:957–960; 2000.

    Article  PubMed  CAS  Google Scholar 

  • Michael, L. H.; Entman, M. L.; Hartley, C. J., et al. Myocardial ischemia and reperfusion: a murine model. Am. J. Physiol. 269:H2147-H2154; 1995.

    PubMed  CAS  Google Scholar 

  • Moldovan, N. I.; Asahara, T. Role of blood mononuclear cells in recanalization and vascularization of thrombi: past, present, and future, Trends Cardiovasc. Med. 13:265–269; 2003.

    Article  PubMed  CAS  Google Scholar 

  • Murohara, T. Angiogenesis and vasculogenesis for therapeutic neovascularization. Nagoya J. Med. Sci. 66:1–7; 2003.

    PubMed  Google Scholar 

  • Niwa, H.; Miyazaki, J.; Smith, A. G. Quantitative expression of Oct-3/4 defines differentiation, dedifferentiation or self-renewal of ES cells. Nat. Genet. 24:372–376; 2000.

    Article  PubMed  CAS  Google Scholar 

  • Orlic, D.; Kajstura, J.; Chimenti, S., et al. Bone marrow cells regenerate infarcted myocardium. Nature 410:701–705; 2001.

    Article  PubMed  CAS  Google Scholar 

  • Rafii, S.; Lyden, D. Therapeutic stem and progenitor cell transplantation for organ vascularization and regeneration. Nat. Med. 9:702–712; 2003.

    Article  PubMed  CAS  Google Scholar 

  • Robb, L.; Elwood, N. J.; Elefanty, A. G.; Kontgen, E.; Li, R.; Barnett, L. D.; Begley, C. G. The sel gene product is required for the generation of all hematopoietic lineages in the adult mouse. EMBO. J. 15:4123–4129; 1996.

    PubMed  CAS  Google Scholar 

  • Robb, L.; Lyons, L.; Li, R.; Hartley, L.; Kontgen, F.; Harvey, R. P.; Metealf, D.; Begley, C. G. Absence of yolk sac hematopoiesis from mice with a targeted disruption of the scl gene. Proc. Natl. Acad. Sci. USA 92:7075–7079; 1995.

    Article  PubMed  CAS  Google Scholar 

  • Robertson, E. J. Embryo-derived stem cell lines. In: Robertson, E. J., ed. Teratocarcinomas and embryonic stem cells: a practical approach. Oxford: IRL Press Limited; 1987:71–112.

    Google Scholar 

  • Rogers, M. B.; Hosler, B. A.; Gudas, L. J. Specific expression of a retinoic acid-regulated, zinc-finger gene, Rex-1, in preimplantation embryos, trophoblast and spermatocytes. Development 113:815–824; 1991.

    PubMed  CAS  Google Scholar 

  • Sehlmeyer, U.; Meister, A.; Beisker, W.; Wobus, A. M. Low mutagenic effects of mitomycin C in undifferentiated embryonic P19 cells are correlated with efficient cell cycle control. Mutat. Res. 354:103–112; 1996.

    PubMed  Google Scholar 

  • Shalaby, F.; Ho, J.; Stanford, W. L.; Fischer, K. D.; Schuh, A. C.; Schwartz, L.; Bernstein, A.; Rossant, J. A requirement for Flk1 in primitive and definitive hematopoiesis and vasculogenesis. Cell 89:981–990; 1997.

    Article  PubMed  CAS  Google Scholar 

  • Shalaby, F.; Rossant, J.; Yamaguchi, T. P.; Gertsenstein, M.; Wu, X. F.; Breitman, M. L.; Schuh, A. C. Failure of blood-island formation and vasculogenesis in Flk-1-deficient mice. Nature 376:62–66; 1995.

    Article  PubMed  CAS  Google Scholar 

  • Shivdasani, R. A.; Mayer, E. L.; Orkin, S. H. Absence of blood formation in mice lacking the T-cell leukaemia oncoprotein tal-I/SCL. Nature 373:432–434; 1995.

    Article  PubMed  CAS  Google Scholar 

  • Smith, J. Brachyury and the T-box genes. Curr. Opin. Genet. Dev. 7:474–480; 1997.

    Article  PubMed  CAS  Google Scholar 

  • Sorieul, S.; Ephrussi, B. Karyological demonstration of hybridization of mammalian cells in vitro. Nature 190:653–654; 1961.

    Article  Google Scholar 

  • Spees, J. L.; Olson, S. D.; Ylostalo, J., et al. Differentiation, cell fusion, and nuclear fusion during ex vivo repair of epithelium by human adult stem cells from bone marrow stroma. Proc. Natl. Acad. Sci. USA 100:2397–2402; 2003.

    Article  PubMed  CAS  Google Scholar 

  • Technau, U. Brachyury, the blastopore and the evolution of the mesoderm. Bioessays 23:788–794; 2001.

    Article  PubMed  CAS  Google Scholar 

  • Terada, N.; Hamazaki, T.; Oka, M., et al. Bone marrow cells adopt the phenotype of other cells by spontaneous cell fusion. Nature 416:542–545; 2002.

    Article  PubMed  CAS  Google Scholar 

  • Vassilopoulos, G.; Wang, P. R.; Russell, D. W. Transplanted bone marrow regenerates liver by cell fusion. Nature 402:901–904; 2003.

    Article  CAS  Google Scholar 

  • Visvader, J. E.; Fujiwara, Y.; Orkin, S. H. Unsuspected role for the T-cell leukemia protein SCL/tal-1 in vascular development. Genes Dev. 12:473–479; 1998.

    PubMed  CAS  Google Scholar 

  • Wang, X.; Willenbring, H.; Akkari, Y., et al. Cell fusion is the principal source of bone-marrow-derived hepatocytes. Nature 422:897–901; 2003.

    Article  PubMed  CAS  Google Scholar 

  • Yin, Y.; Lim, Y. K.; Salto-Tellez, M.; Ng, S. C.; Lin, C. S.; Lim, S. K. AFP(+), ESC-derived cells engraft and differentiate into hepatocytes in vivo. Stem Cells 20:338–346; 2002.

    Article  PubMed  CAS  Google Scholar 

  • Yin, Y.; Que, J.; Teh, M.; Ping Cao, W.; El Oakley, R. M.; Lim, S. K. Embryonic cell lines with endothelial potential: an in vitro system for studying endothelial differentiation. Arterioscler. Thromb. Vasc. Biol. 24:691–696; 2004.

    Article  PubMed  CAS  Google Scholar 

  • Ying, Q. L.; Nichols, J.; Evans, E. P.; Smith, A. G. Changing potency by spontaneous fusion. Nature 416:545–548; 2002.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sai-Kiang Lim.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Que, J., Menshawe El Oakley, R., Salto-Tellez, M. et al. Generation of hybrid cell lines with endothelial potential from spontaneous fusion of adult bone marrow cells with embryonic fibroblast feeder. In Vitro Cell.Dev.Biol.-Animal 40, 143–149 (2004). https://doi.org/10.1290/1543-706X(2004)40<143:GOHCLW>2.0.CO;2

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1290/1543-706X(2004)40<143:GOHCLW>2.0.CO;2

Key words

Navigation